News

MIT physicists predict exotic form of matter with potential for quantum computing

New work suggests the ability to create fractionalized electrons known as non-Abelian anyons without a magnetic field, opening new possibilities for basic research and future applications.

This illustration represents an emergent magnetic field felt by electrons in atomically thin layers of molybdenum ditelluride in the absence of an external magnetic field. White circles represent fractionally charged non-Abelian anyons exchanging positions. This phenomenon could be exploited to create quantum bits, the building blocks of future quantum computers.
This illustration represents an emergent magnetic field felt by electrons in atomically thin layers of molybdenum ditelluride in the absence of an external magnetic field. White circles represent fractionally charged non-Abelian anyons exchanging positions. This phenomenon could be exploited to create quantum bits, the building blocks of future quantum computers.
Image courtesy of the Fu Lab.
Monday, November 18, 2024
By Elizabeth A. Thomson | Materials Research Laboratory