News

Using wobbling stellar material, astronomers measure the spin of a supermassive black hole for the first time

The results offer a new way to probe supermassive black holes and their evolution across the universe.

This schematic figure depicts the precession of an accretion disk formed from the debris of a disrupted star around a supermassive black hole (SMBH). The left panel shows the precession phase when the accretion disk is close to an edge-on configuration, which results in the smaller disk area being observed and thus lower luminosity. The observer can see mostly the colder, outer parts of the precessing disk. The right panel depicts a nearly face-on precession phase, when the visible disk area is larger and hence the luminosity also increases. The inner, warmer parts of the disk are then fully exposed.
This schematic figure depicts the precession of an accretion disk formed from the debris of a disrupted star around a supermassive black hole (SMBH). The left panel shows the precession phase when the accretion disk is close to an edge-on configuration, which results in the smaller disk area being observed and thus lower luminosity. The observer can see mostly the colder, outer parts of the precessing disk. The right panel depicts a nearly face-on precession phase, when the visible disk area is larger and hence the luminosity also increases. The inner, warmer parts of the disk are then fully exposed.
Image: Courtesy of Michal Zajacek & Dheeraj Pasham
Wednesday, May 22, 2024
By Jennifer Chu | MIT News